1,933 research outputs found

    Object recognition using shape-from-shading

    Get PDF
    This paper investigates whether surface topography information extracted from intensity images using a recently reported shape-from-shading (SFS) algorithm can be used for the purposes of 3D object recognition. We consider how curvature and shape-index information delivered by this algorithm can be used to recognize objects based on their surface topography. We explore two contrasting object recognition strategies. The first of these is based on a low-level attribute summary and uses histograms of curvature and orientation measurements. The second approach is based on the structural arrangement of constant shape-index maximal patches and their associated region attributes. We show that region curvedness and a string ordering of the regions according to size provides recognition accuracy of about 96 percent. By polling various recognition schemes. including a graph matching method. we show that a recognition rate of 98-99 percent is achievable

    New constraints on data-closeness and needle map consistency for shape-from-shading

    Get PDF
    This paper makes two contributions to the problem of needle-map recovery using shape-from-shading. First, we provide a geometric update procedure which allows the image irradiance equation to be satisfied as a hard constraint. This not only improves the data closeness of the recovered needle-map, but also removes the necessity for extensive parameter tuning. Second, we exploit the improved ease of control of the new shape-from-shading process to investigate various types of needle-map consistency constraint. The first set of constraints are based on needle-map smoothness. The second avenue of investigation is to use curvature information to impose topographic constraints. Third, we explore ways in which the needle-map is recovered so as to be consistent with the image gradient field. In each case we explore a variety of robust error measures and consistency weighting schemes that can be used to impose the desired constraints on the recovered needle-map. We provide an experimental assessment of the new shape-from-shading framework on both real world images and synthetic images with known ground truth surface normals. The main conclusion drawn from our analysis is that the data-closeness constraint improves the efficiency of shape-from-shading and that both the topographic and gradient consistency constraints improve the fidelity of the recovered needle-map

    Dynamics of grain ejection by sphere impact on a granular bed

    Get PDF
    The dynamics of grain ejection consecutive to a sphere impacting a granular material is investigated experimentally and the variations of the characteristics of grain ejection with the control parameters are quantitatively studied. The time evolution of the corona formed by the ejected grains is reported, mainly in terms of its diameter and height, and favourably compared with a simple ballistic model. A key characteristic of the granular corona is that the angle formed by its edge with the horizontal granular surface remains constant during the ejection process, which again can be reproduced by the ballistic model. The number and the kinetic energy of the ejected grains is evaluated and allows for the calculation of an effective restitution coefficient characterizing the complex collision process between the impacting sphere and the fine granular target. The effective restitution coefficient is found to be constant when varying the control parameters.Comment: 9 page

    Live stream webcams on the neonatal unit: ‘An additional responsibility’ for nursing workload?

    Get PDF
    Introduction: Live stream webcams have been introduced to neonatal units to reduce the separation between parents and infants. However, this new technology has the potential to impact nursing workload. The aim of this study was to explore the impact of the new implementation of webcams on nursing workload. Method: A survey was developed to explore webcam related nursing activity. Workload evaluations were completed by each nurse per shift, over a three-month period. Results: A total of 85 nurses took part in the study, completing 765 workload surveys. Findings revealed 95% of camera related tasks took less than 15 min. Parent phone calls related to webcams and changes in workflow for infant handling were identified. Conclusion: The introduction of webcams did not negatively impact nursing workload. Education for nurses and parents, and a technological support nurse or team would help lessen some of the challenges nurses experienced

    Making a splash with water repellency

    Full text link
    A 'splash' is usually heard when a solid body enters water at large velocity. This phenomena originates from the formation of an air cavity resulting from the complex transient dynamics of the free interface during the impact. The classical picture of impacts on free surfaces relies solely on fluid inertia, arguing that surface properties and viscous effects are negligible at sufficiently large velocities. In strong contrast to this large-scale hydrodynamic viewpoint, we demonstrate in this study that the wettability of the impacting body is a key factor in determining the degree of splashing. This unexpected result is illustrated in Fig.1: a large cavity is evident for an impacting hydrophobic sphere (1.b), contrasting with the hydrophilic sphere's impact under the very same conditions (1.a). This unforeseen fact is furthermore embodied in the dependence of the threshold velocity for air entrainment on the contact angle of the impacting body, as well as on the ratio between the surface tension and fluid viscosity, thereby defining a critical capillary velocity. As a paradigm, we show that superhydrophobic impacters make a big 'splash' for any impact velocity. This novel understanding provides a new perspective for impacts on free surfaces, and reveals that modifications of the detailed nature of the surface -- involving physico-chemical aspects at the nanometric scales -- provide an efficient and versatile strategy for controlling the water entry of solid bodies at high velocity.Comment: accepted for publication in Nature Physic

    GINZBURG-LANDAU THEORY OF VORTICES IN dd-WAVE SUPERCONDUCTORS

    Full text link
    Ginzburg-Landau theory is used to study the properties of single vortices and of the Abrikosov vortex lattice in a dx2−y2d_{x^2-y^2} superconductor. For a single vortex, the ss-wave order parameter has the expected four-lobe structure in a ring around the core and falls off like 1/r21/r^2 at large distances. The topological structure of the ss-wave order parameter consists of one counter-rotating unit vortex, centered at the core, surrounded by four symmetrically placed positive unit vortices. The Abrikosov lattice is shown to have a triangular structure close to TcT_c and an oblique structure at lower temperatures. Comparison is made to recent neutron scattering data.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation

    Get PDF
    Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources

    Deep-water flow over the Lomonosov Ridge in the Arctic Ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 1489–1493, doi:10.1175/JPO2765.1.The Arctic Ocean likely impacts global climate through its effect on the rate of deep-water formation and the subsequent influence on global thermohaline circulation. Here, the renewal of the deep waters in the isolated Canadian Basin is quanitified. Using hydraulic theory and hydrographic observations, the authors calculate the magnitude of this renewal where circumstances have thus far prevented direct measurements. A volume flow rate of Q = 0.25 ± 0.15 Sv (Sv ≡ 106 m3s−1) from the Eurasian Basin to the Canadian Basin via a deep gap in the dividing Lomonosov Ridge is estimated. Deep-water renewal time estimates based on this flow are consistent with 14C isolation ages. The flow is sufficiently large that it has a greater impact on the Canadian Basin deep water than either the geothermal heat flux or diffusive fluxes at the deep-water boundaries.Financial support was provided to P. Winsor from NSF OPP- 0352628
    • …
    corecore